| 
					
						|  |  
    					|  |  
    					| 多目标分式规划的基本定理 |  
						| 林锉云 |  
					| 江西大学数学系; |  
						|  |  
					
						| 
								
									| 
											
                        					 
												
													
													    |  |  
													    | 摘要 <正> §1 引言文章[1]中系统的讨论了多目标凸规划的弱有效介、有效介和真有效介的基本定理。在一定的条件下,论证了多目标凸规划问题与其相应的线性加权和问题、鞍点问题以及Lagra-nge问题之间的密切关系。 |  |  
															| 关键词 :
																																																																基本定理, 
																																																																	等价定理, 
																																																																	多目标分式规划, 
																																																																	凸规划问题, 
																																																																	伪凸函数, 
																																																																	鞍点问题, 
																																																																	严格凸, 
																																																																	当且仅当, 
																																																																	多目标凸规划, 
																																																																	等价关系 |  
															| 出版日期: 1984-03-28 |  
													
														
															| 
																																																																																																										
																					| [1] | 曾广兴; 郑建平. 关于模上赋值的分解[J]. 南昌大学学报(理科版), 2011, 35(05): 1-. |  
																					| [2] | 谢霖铨; 梅宏标. 混合信息系统属性约简[J]. 南昌大学学报(理科版), 2010, 34(04): 1-. |  
																					| [3] | 傅俊义. 可缩空间与变分不等式[J]. 南昌大学学报(理科版), 1997, 21(03): 1-. |  
																					| [4] | 林锉云. 多目标规划中Kuhn-Tucker条件的充分性的推广[J]. 南昌大学学报(理科版), 1990, 14(03): 1-. |  
																					| [5] | 戴执中. 交换环上赋值与序的相容性[J]. 南昌大学学报(理科版), 1988, 12(03): 1-. |  
																					| [6] | 熊蕙萍. 关于群集的根的一点注记[J]. 南昌大学学报(理科版), 1987, 11(04): 1-. |  
																					| [7] | 胡玉馨. 关于2范空间中的范数等价定理[J]. 南昌大学学报(理科版), 1987, 11(03): 1-. |  
																					| [8] | 张人智. τ_r在R-tors中的极大性[J]. 南昌大学学报(理科版), 1986, 10(03): 1-. |  
																					| [9] | 陈炳辉; 漆芝南. 格序群的先根与拟根[J]. 南昌大学学报(理科版), 1985, 9(03): 1-. |  
																					| [10] | 林锉云. 多目标非线性规划对偶理论的推广[J]. 南昌大学学报(理科版), 1985, 9(03): 1-. |  
																					| [11] | 林锉云. 多目标凸规划的自身对偶性[J]. 南昌大学学报(理科版), 1984, 8(04): 1-. |  
																					| [12] | . 可展曲面曲线基本定理及其应用[J]. 南昌大学学报(理科版), 1984, 8(01): 1-. |  
																					| [13] | 梅家骝. 关于凸函数不等式组的一些讨论[J]. 南昌大学学报(理科版), 1983, 7(03): 1-. |  
																					| [14] | 傅俊义. Banach空间凸性在商空间上的遗传性[J]. 南昌大学学报(理科版), 1983, 7(01): 1-. |  
																					| [15] | 林锉云. 多目标广义凸规划问题的有效解和弱有效解的充分必要条件[J]. 南昌大学学报(理科版), 1982, 6(02): 1-. |  |  
											 
											 |  |  |