|
|
多目标广义凸规划问题的有效解和弱有效解的充分必要条件 |
林锉云 |
江西大学; |
|
|
摘要 <正> 当(VP)中的每个f_i(x)和g_j(x)均为普通的凸函数时,文章[1]讨论了(VP)的有效解和弱有效解的充分必要条件。只要再假定每个h_k(x)是线性函数时,文章[1]讨论的(VP)的充分必要条件也不难推广到(VP)。
|
|
关键词 :
充分条件,
伪凸函数,
弱有效解,
最优解,
凸规划问题,
拟凸函数,
可行解集,
引理,
充分必要条件,
多目标
|
出版日期: 1982-06-28
|
[1] |
柳叶. 一类特殊Gabor框的存在性[J]. 南昌大学学报(理科版), 2016, 40(06): 532-. |
[2] |
徐义红;肖明丽;涂相求; . 群体多目标决策联合超有效解的广义梯度型最优性条件[J]. 南昌大学学报(工科版), 2013, 35(02): 176-. |
[3] |
余廷芳;朱洪震;彭春华. 基于NSGA-Ⅱ算法的锅炉燃烧多目标优化[J]. 南昌大学学报(工科版), 2013, 35(01): 58-. |
[4] |
龚循华; 邬建军;. 向量均衡问题解解集的连通性[J]. 南昌大学学报(理科版), 2013, 37(01): 1-. |
[5] |
孔海星;龚循华;胡启宙;徐向阳. 约束锥内部为空时集值向量均衡问题的最优性条件[J]. 南昌大学学报(理科版), 2012, 36(05): 420-. |
[6] |
龚循华; 孟旭东. 集值向量均衡问题的必要性条件[J]. 南昌大学学报(理科版), 2012, 36(03): 215-. |
[7] |
钟纯; 吴雪; 陈文财. 基于VaR和CVaR下优化模型及其在保险资金组合投资中的应用[J]. 南昌大学学报(工科版), 2011, 33(04): 1-. |
[8] |
龚循华; 魏振飞. 向量均衡问题的K-T条件[J]. 南昌大学学报(理科版), 2010, 34(05): 1-. |
[9] |
宋军; 徐凤云. 向量均衡问题弱有效解的稳定性[J]. 南昌大学学报(理科版), 2010, 34(05): 1-. |
[10] |
徐兵. 拟凸函数下次微分的性质及计算[J]. 南昌大学学报(理科版), 2010, 34(05): 1-. |
[11] |
龚循华; 马博厂. 向量均衡问题的最优性条件[J]. 南昌大学学报(理科版), 2009, 33(06): 1-. |
[12] |
龚循华; 熊淑群. 类凸向量均衡问题解的最优性条件[J]. 南昌大学学报(理科版), 2009, 33(05): 1-. |
[13] |
龚循华; 孔海星. 约束锥内部为空时向量均衡问题的最优性条件[J]. 南昌大学学报(理科版), 2009, 33(03): 1-. |
[14] |
白似雪; 黄美玲. 一种改进的求解多目标优化问题的蚁群算法[J]. 南昌大学学报(理科版), 2008, 32(04): 1-. |
[15] |
徐义红; 余丽; 吴功跃. (h,φ)多目标规划的鞍点最优性条件[J]. 南昌大学学报(理科版), 2008, 32(03): 1-. |
|
|
|
|