|
|
含参集值向量均衡问题全局有效解映射和Henig有效解映射的下半连续性 |
乐华明; 陈斌; 龚循华 |
南昌大学数学系; 赣州一中; |
|
YUE Hua-ming1,2,CHEN Bin1,GONG Xun-hua1(1.Department of Mathematics,Nanchang University,Nanchang 330031,China;2.Ganzhou 1th Middle School,Jiangxi Ganzhou 341000,China) |
引用本文: |
乐华明; 陈斌; 龚循华. 含参集值向量均衡问题全局有效解映射和Henig有效解映射的下半连续性[J]. 南昌大学学报(理科版), 2009, 33(02): 1-.
YUE Hua-ming1,2,CHEN Bin1,GONG Xun-hua1(1.Department of Mathematics,Nanchang University,Nanchang 330031,China;2.Ganzhou 1th Middle School,Jiangxi Ganzhou 341000,China). . , 2009, 33(02): 1-.
|
|
|
|
链接本文: |
http://qks.ncu.edu.cn/Jwk_xblxb/CN/ 或 http://qks.ncu.edu.cn/Jwk_xblxb/CN/Y2009/V33/I02/1 |
[1] |
孟旭东; 王三华; 邓中书. 含参集值向量均衡问题有效解映射的下半连续性[J]. 南昌大学学报(理科版), 2016, 40(03): 219-. |
[2] |
刘芳; 龚循华; . 含参向量优化问题真有效解映射的下半连续性[J]. 南昌大学学报(理科版), 2013, 37(03): 215-. |
[3] |
龚循华; 孟旭东. 集值向量均衡问题的必要性条件[J]. 南昌大学学报(理科版), 2012, 36(03): 215-. |
[4] |
龚循华; 龚舒. 向量均衡问题的超有效解[J]. 南昌大学学报(理科版), 2011, 35(01): 1-. |
[5] |
龚循华; 魏振飞. 向量均衡问题的K-T条件[J]. 南昌大学学报(理科版), 2010, 34(05): 1-. |
[6] |
龚循华; 熊淑群. 类凸向量均衡问题解的最优性条件[J]. 南昌大学学报(理科版), 2009, 33(05): 1-. |
[7] |
陈斌; 龚循华; 余嫱. 参数集值强向量均衡问题解的稳定性[J]. 南昌大学学报(理科版), 2008, 32(04): 1-. |
[8] |
王秀玲; 杨雯雯; 龚循华. Henig有效解集以及全局真有效解集的连通性[J]. 南昌大学学报(工科版), 2006, 28(04): 1-. |
[9] |
刘玉兰; 李湖南; 梅家骝. 下层带扰动参数的二层多目标最优化问题有效点集的锥次微分稳定性[J]. 南昌大学学报(理科版), 2005, 29(03): 1-. |
[10] |
傅俊义; 黄志丹. 参数向量均衡问题[J]. 南昌大学学报(理科版), 2004, 28(04): 1-. |
[11] |
刘理蔚. 关于多值增生和多值单调映射的连续性[J]. 南昌大学学报(理科版), 2004, 28(01): 1-. |
[12] |
刘玉兰; 施绍萍; 梅家骝. 上层带扰动参数的二层多目标最优化问题有效点集的锥次微分稳定性[J]. 南昌大学学报(理科版), 2002, 26(01): 1-. |
[13] |
刘理蔚. 关于不动点单调原理的注记[J]. 南昌大学学报(理科版), 1987, 11(03): 1-. |
[14] |
陈生; 张秀之. 局部凸空间的集值映射与不动点定理[J]. 南昌大学学报(理科版), 1985, 9(04): 1-. |
[15] |
梅家骝. 关于凸函数不等式组的一些讨论[J]. 南昌大学学报(理科版), 1983, 7(03): 1-. |
|
|
|
|