赤道上不含整条軌线的三次系统极限环的一般性质和相对位置
杨宗培
江西工业大学基础部;
Yang Zongpei (Basic Courses Department)
摘要 本文考虑赤道上不含整条轨线的一类三次微分系统,证明了该系统的极限环有类似于二次微分系统的极限环的一些几何性质
关键词 :
无限临界点 ,
极限环 ,
赤道轨线
Abstract :In this parer, a class of cubic differential systems for which there does not existx any infinite orbit different from infinite critical point is studied. Some geometric properties of limit cycles similar to the ones of quadratic systems for this class of
Key words :
limit cycles
Infinite ovbit Infinte critical point;
出版日期: 1987-12-28
[1]
曾广洪; 吴庆初; 张斐. 不可逆多分子饱和生化反应系统的非线性分析及数值模拟 [J]. 南昌大学学报(理科版), 2016, 40(01): 8-.
[2]
邱树林. 一类E_3~1系统的定性分析 [J]. 南昌大学学报(理科版), 2009, 33(04): 1-.
[3]
林冀; 熊佐亮. 稀疏效应下捕食—食饵系统的定性分析与计算机实验 [J]. 南昌大学学报(工科版), 2007, 29(02): 1-.
[4]
邹娓; 熊佐亮. 具功能性反应的食饵—捕食者两种群模型的定性分析 [J]. 南昌大学学报(工科版), 2005, 27(03): 1-.
[5]
蒋鹏. 一类带有存放率的 Kolmogorov 系统的定性分析 [J]. 南昌大学学报(工科版), 1998, 20(01): 1-.
[6]
熊佐亮. 生化反应中的一类多分子反应模型研究 [J]. 南昌大学学报(工科版), 1995, 17(03): 1-.
[7]
. 江西工业大学学报1987年1—4期总目录 [J]. 南昌大学学报(工科版), 1987, 9(04): 1-.
[8]
杨宗培. Ⅱ(l=0)类方程极限环的集中分布 [J]. 南昌大学学报(理科版), 1985, 9(04): 1-.
[9]
王梅影. 应用描述函数法分析非线性振荡 [J]. 南昌大学学报(理科版), 1985, 9(03): 1-.
[10]
杨宗培. 判定闭轨线不存在的一个比较定理 [J]. 南昌大学学报(工科版), 1983, 5(01): 1-.
[11]
杨宗培. 判别二维定常系统闭轨线不存在的一个定理 [J]. 南昌大学学报(工科版), 1980, 2(02): 1-.