|
|
有关c-距离下单值映射的不动点定理 |
韩艳许绍元段江梅代婷婷 |
昭通学院数学与统计学院韩山师范学院数学与统计学院 |
|
|
摘要 文献中大部分有关锥度量空间中c-距离下的定理都是在要求锥的正规性或者要求映射的连续性的条件下成立的,二者必有一个存在于定理的条件中。本文在锥度量空间中c-距离下获得了有关一个单值映射的不动点定理。所得结果同时去掉了这两个条件,结论上得到了不动点的存在性和唯一性,最后给出了相应的例子说明本文结论改进并推广了相关文献中的许多重要结论。
|
|
关键词 :
c-距离,
单值映射,
不动点
|
|
基金资助:云南省应用基础研究计划基金资助项目(2016FD082); |
[1] |
范一凡朱传喜. 关于b-度量空间的若干问题研究[J]. 南昌大学学报(理科版), 2018, 42(2): 103-. |
[2] |
沈霞; 孟京华; 刘文军. 非Lipschitz的渐近弱伪压缩映象不动点的迭代逼近[J]. 南昌大学学报(理科版), 2016, 40(01): 13-. |
[3] |
张丹. 具有(Ag)型Φ-弱交换条件的六个映象的公共不动点定理[J]. 南昌大学学报(理科版), 2013, 37(02): 123-. |
[4] |
黄先玖;朱槐洪;章晓娥; . L-模糊度量空间中序列映射的公共不动点定理[J]. 南昌大学学报(理科版), 2012, 36(06): 511-. |
[5] |
黄记洲;李鹏程;黄庆华;. 概周期系数的时滞微分方程概周期解的存在性[J]. 南昌大学学报(理科版), 2012, 36(06): 524-. |
[6] |
陈春芳;郭星;赵瑄;章晓娥. G-度量空间中的几个不动点定理[J]. 南昌大学学报(理科版), 2012, 36(05): 409-. |
[7] |
刘华祥; 曾广洪. 一类具一般功能反应的脉冲控制微分方程模型的非平凡周期解分支[J]. 南昌大学学报(理科版), 2012, 36(05): 429-. |
[8] |
尹建东; 刘晓晔. 随机半闭1-集压缩算子随机不动点指数的计算[J]. 南昌大学学报(理科版), 2012, 36(04): 307-. |
[9] |
朱传喜; 宋大龙. Z-C-X空间中的随机泛函分析问题[J]. 南昌大学学报(理科版), 2012, 36(01): 1-4. |
[10] |
. 南昌大学学报(理科版)2011年总目次[J]. 南昌大学学报(理科版), 2011, 35(06): 1-. |
[11] |
尹建东; 郭挺. 反向混合单调算子的藕合不动点定理[J]. 南昌大学学报(理科版), 2011, 35(03): 1-. |
[12] |
朱传喜; 肖芳明. Z-P-S空间中定点紧压缩概率算子的不动点定理[J]. 南昌大学学报(理科版), 2011, 35(02): 1-. |
[13] |
向雪萍; 孟京华; 李红. Banach空间中具数列的渐近非扩张型映像逼近序列的强收敛性[J]. 南昌大学学报(理科版), 2011, 35(02): 1-. |
[14] |
朱传喜; 罗雷. Polish空间中随机相容算子的公共随机不动点[J]. 南昌大学学报(工科版), 2011, 33(01): 1-. |
[15] |
王培培; 朱传喜. Menger概率2-度量空间中(A)-型相容映像的不动点定理[J]. 南昌大学学报(工科版), 2011, 33(01): 1-. |
|
|
|
|