圆柱和半平面域拓扑积的Dirichlet问题
刘小妹; 许忠义
南昌大学数学系; 南昌大学数学系 江西南昌330047; 江西南昌330047;
LIU Xiao-|mei,XU Zhong-|yi(Department of Mathematics,Nanchang University,Nanchang 330047, China)
摘要 在圆柱和上半平面域拓扑积的特征流形上引入一组奇性积分算子M~2,由此来讨论该区域的D irichlet问题和Neum ann问题的解。得到这个区域上的D irichlet边值问题的解的表达式就是它的拓广的Poisson积分表示式。作为它的一个应用,还讨论了这个区域的Neum ann边值问题的解。
关键词 :
Neumann问题 ,
B-调和函数 ,
Dirichlet问题
Abstract :This paper established a group of real singular integral operators on characteristic manifold of topological product of cylindrical and half-plane domains,by which it discussed the solutions of Dirichlet-problem and neumann-problem on this domains.It otai
Key words :
B-harmonic function
Dirichlet-problem
Neumann-problem;
出版日期: 2005-08-28
[1]
饶若峰; 张石生. 一类具临界指数椭圆方程的非平凡解存在性 [J]. 南昌大学学报(理科版), 2008, 32(01): 1-.
[2]
曾招云; 胡琳; 许忠义. 两个半平面上的Dirichlet问题 [J]. 南昌大学学报(工科版), 2006, 28(02): 1-.
[3]
赵成兵; 潘国双; 许忠义. n维圆柱和m维半平面拓扑积的Hilbert边值问题 [J]. 南昌大学学报(工科版), 2002, 24(02): 1-.
[4]
钟新华. 临界增长的拟线性椭圆型方程的Neumann问题 [J]. 南昌大学学报(理科版), 1997, 21(04): 1-.
[5]
许忠义. 在两个半平面上解析函数的Schwarz积分 [J]. 南昌大学学报(理科版), 1989, 13(01): 1-.