一类具临界指数椭圆方程的非平凡解存在性
饶若峰; 张石生
宜宾学院数学系; 四川大学数学学院 四川宜宾644000; 四川成都610064;
RAO Ruo-feng1,ZHANG Shi-sheng2(1.Department of Mathematics;Yibin College,Yibin 644000,China;2.Department of Mathematics,Sichuan University,Chengdu 610064,China)
摘要 当N 4时,Capozzi A(1985),Ambrosetti A(1986)给出了具临界指数2*的椭圆型方程-Δku+|u|2*-2u,inΩRN;u=0,onΩ(*)非平凡解的存在性结论,其中λk是算子-Δ的第k个特征值。然而N=3是问题(*)的临界维数,在适当添加一个次临界扰动项后,利用P.L.Lions集中紧性原理获得了一对非平凡
关键词 :
临界指数 ,
Dirichlet问题 ,
集中紧性原理
Abstract :It is well known that Capozzi A(1985) and Ambrosetti A(1986) have got existence theorems of the following elliptic equation with critical Sobolev exponent if N4,-Δku+|u|2*-2u,in ΩRN;u=0,on Ω(*)where λk is the kth eigen-value of-Δ.However,N=3 is the c
Key words :
critical sobolev exponent
dirichlet problem
concentration-cmpactness principle;
出版日期: 2008-02-28
引用本文:
饶若峰; 张石生. 一类具临界指数椭圆方程的非平凡解存在性[J]. 南昌大学学报(理科版), 2008, 32(01): 1-.
RAO Ruo-feng1,ZHANG Shi-sheng2(1.Department of Mathematics;Yibin College,Yibin 644000,China;2.Department of Mathematics,Sichuan University,Chengdu 610064,China). . , 2008, 32(01): 1-.
链接本文:
http://qks.ncu.edu.cn/Jwk_xblxb/CN/ 或 http://qks.ncu.edu.cn/Jwk_xblxb/CN/Y2008/V32/I01/1