摘要孪生有界支持向量机(Twin Bounded Support Vector Machine,TBSVM)是近期提出的一种优秀的距离度量学习二分类算法。在TBSVM的目标函数中,使用L2范数距离作为度量准则,因此当训练样本中出现异常值或噪声时,L2范数距离的平方很容易夸大它们的影响。为了缓和这一问题,本文提出了一种鲁棒的基于L1范数距离度量的TBSVM分类算法(L1-TBSVM)。由于L1-TBSVM的目标函数中包含了非平滑的L1范数项,很难直接对它进行求解,故我们通过迭代增广向量来更新对角矩阵,直到目标函数值收敛到一个固定值,以此来获得最优解。该迭代算法简单有效,且易于实施。最后,通过合理的理论分析,以及在UCI数据集和人工数据集上的大量实验,检验了L1-TBSVM算法的可行性和有效性。