|
|
解(1,1)块对称不定线性系统的广义修正SSOR迭代法 |
程军 李正彪 郑彭丹 张莉君 |
曲靖师范学院教师教育学院 曲靖师范学院数学与统计学院 中南林业科技大学涉外学院信息与工程学院 曲靖市特殊教育学校 |
|
|
摘要 在大规模稀疏线性系统中,对于2×2系统中(1,1)块矩阵为不定矩阵的鞍点问题,本文建立了求解(1,1)块为对称不定线性系统的GMSSOR方法。关于大型稀疏线性系统鞍点问题的对称和不确定条件,采用了强迫正定的方法,然后利用分裂方法构造了求解系数矩阵中1×1块是对称不定的鞍点问题的迭代方法,证明了这种新的迭代方法的收敛性。最后通过数值算例表明,具有适当参数的GMSSOR方法比具有最优参数的MSSOR方法具有更快的收敛速度。
|
|
关键词 :
GMSSOR方法,
对称不定,
矩阵分裂,
迭代方法
|
|
基金资助:国家自然科学基金资助项目(51463021); 云南省教育厅科学研究基金资助项目(2019J0610,2018JS438); 曲靖师范学院科学研究基金资助项目(2015QN018); |
|
|
|