|
摘要 二元语言术语集是表达不确定环境下决策信息的重要工具,然而,已有的二元语言术语集的运算法则往往不能保证计算结果仍在语言范围之内。本文通过定义新的转换函数并结合Einstein运算,提出了二元语言术语集的新算法。新算法有效解决了以往运算法则中计算结果超出语言范围的问题,新算法同时也考虑了决策者的决策评判心理边际效用递减现象。在此基础上提出了二元语言术语集的多属性信息聚合算子和相应的多属性决策方法,并通过供应商选择案例验证了该算法的有效性。
|
|
关键词 :
二元语言术语集,
边际效用,
转换函数,
多属性决策方法
|
|
基金资助:国家自然科学基金资助项目(11661053); 江西省自然科学基金资助项目(20181BAB201003); |
|
|