|
|
基于模糊组合权重的BA-SVM短期负荷预测 |
沈渊彬; 刘庆珍; 李友军; 苏申 |
福州大学电气工程及自动化学院 |
|
SHEN Yuanbin;LIU Qingzhen;LI Youjun;SU Shen |
|
摘要 针对支持向量机(SVM)内部参数优化和输入量大、时间长效率低和相似日选取的问题,提出一种模糊组合权重下相似日选取的蝙蝠算法(BA)优化的支持向量机(SVM)短期负荷预测模型。相似日的选取上主要利用熵权法和加权欧氏距离的k-均值算法对影响负荷变化的因素、负荷各时刻的变化特性进行区别对待,求取二者在相似日下集合的交集,从而得到与待预测日相似度高的相似日。同时,利用BA优化后的SVM进行负荷预测,提高内部参数的选取精度和效率。将该模型与常用的PSO-SVM、GA-SVM进行比较,证明了该模型能有效提高预测精度和计算效率。 更多还原
|
|
关键词 :
模糊组合权重,
蝙蝠算法,
支持向量机,
短期负荷预测
|
|
[1] |
赖清衷卫声熊鹏文黄嘉诚任倩茹. 基于BP神经网络与多分类支持向量机的水质识别与分类[J]. 南昌大学学报(理科版), 2016, 40(06): 563-. |
[2] |
饶泓; 陈慧佳; 董晓睿. 基于三元矩阵的层次分析多分类模型[J]. 南昌大学学报(理科版), 2015, 39(04): 347-. |
[3] |
陆荣秀;杨辉;欧阳超明;朱璐闻; . 基于PCA-LS_SVM的镨\钕萃取过程元素组分含量预测[J]. 南昌大学学报(理科版), 2013, 37(06): 589-. |
[4] |
梁声灼;谢文修;李芒; . 一种改进的1-v-1 SVM多类分类算法[J]. 南昌大学学报(理科版), 2013, 37(03): 287-. |
[5] |
姜海燕; 杜民. 基于最小二乘支持向量机的纳米金免疫层析试条快速定量[J]. 南昌大学学报(工科版), 2012, 34(03): 283-. |
[6] |
林苏斌; 陈为. 基于支持向量机的热电偶高频磁场环境测温误差校正[J]. 南昌大学学报(工科版), 2012, 34(02): 183-. |
[7] |
徐敏; 袁建洲; 刘四新; 郭含. 基于支持向量机的短期风电功率预测[J]. 南昌大学学报(工科版), 2012, 34(02): 201-. |
[8] |
曾勍炜; 徐知海; 付爱英; 邓庚盛. 融合蚁群算法与支持向量机的网络流量预测[J]. 南昌大学学报(理科版), 2011, 35(04): 1-. |
[9] |
白似雪; 刘华斌. 基于页面分块模型的PageRank算法研究[J]. 南昌大学学报(工科版), 2008, 30(02): 1-. |
[10] |
. 南昌大学学报(理科版)2007年总目次 [J]. 南昌大学学报(理科版), 2007, 31(06): 1-. |
[11] |
富坤; 富成科; 汪友华; 杨晓光. 基于支持向量机对种群特征回归分析的自适应遗传算法[J]. 南昌大学学报(理科版), 2007, 31(04): 1-. |
[12] |
刘显贵; 谢云敏; 陈无畏. 一种基于核主元分析的支持向量机识别方法[J]. 南昌大学学报(理科版), 2007, 31(01): 1-. |
[13] |
周博韬; 李安贵. 最小二乘支持向量机的一种改进算法[J]. 南昌大学学报(理科版), 2006, 30(06): 1-. |
[14] |
戴文进; 付小科. 基于模式识别和神经网络的电力系统短期负荷预测[J]. 南昌大学学报(工科版), 2003, 25(02): 1-. |
|
|
|
|