|
摘要 梯度投影算法在信号与图像处理、机器学习和数据挖掘等很多领域中有着广泛的应用,如何有效的计算投影算子是该算法的关键。对于单一闭凸集上的投影算子的计算,特别是具有稀疏约束的集合,已有很多的研究者给出了不同的优化算法。对于多个非空闭凸集合交上的投影,需要根据集合的性质设计算法。本文给出在一般Hilbert空间中有限族非空闭凸集合交上投影算子计算的统一方法。首先,我们定义笛卡尔乘积空间,将有限族非空闭凸集的交转化为两个非空闭凸集的交,然后将Dykstra算法推广到这类问题的求解。同时,我们将有限族非空闭凸集交上投影问题转化为无约束优化问题,并基于Douglas-Rachford算子分裂和三算子分裂方法思想,建立求解该无约束优化问题的迭代算法及证明算法的收敛性。最后,应用所提算法求解具有非负约束的l1范数单位球上的投影问题,通过数值实验,结果表明所提算法能快速和准确的收敛到真实解。
|
|
关键词 :
投影算子,
Dykstra算法,
Douglas-Rachford算法,
三算子分裂算法
|
|
|
|