增生算子的若干注记
李育强; 刘理蔚
南昌大学数学系;
Li Yuqiang Liu Liwei (Department of Mathematics,Nanchang University,Nanchang,330047)
摘要 通过讨论增生算子和一致连续性之间的关系,得到主要结果:设T:D(T)X→CB(X),为多值增生算子且int(D(T))≠,若T还是H一致连续映射,则T在D(T)内部是单射。最后给出一个关于多值增生算子解的迭代的新结果
关键词 :
增生算子 ,
注记 ,
H一致连续
Abstract :By discussing relations between accretive operators and H-uniform continuity,we get a main result:Suppose mapping T:D(T)X→2 x is set-valued accretive operator with int (D(T)≠ and T is H-uniformly continuous.Then T is single-valued in the interior of D
Key words :
accretive operator;
H-uniform continuity
出版日期: 1999-03-28
[1]
韩瑜; 邬建军; 龚循华. 关于向量优化的适定性和凸性的一个注记 [J]. 南昌大学学报(理科版), 2014, 38(05): 411-.
[2]
杨云苏. Banach空间中关于(H,η)增生算子的变分包含问题 [J]. 南昌大学学报(理科版), 2009, 33(05): 1-.
[3]
陈月红; 胡良根. 有限族增生算子公共解的Halpern迭代 [J]. 南昌大学学报(理科版), 2009, 33(04): 1-.
[4]
唐玉超; 刘理蔚. 含有φ一次增生算子T的方程x+Tx=f的Ishikawa迭代解 [J]. 南昌大学学报(理科版), 2005, 29(06): 1-.
[5]
. 南昌大学(理科版)2005年总目次 [J]. 南昌大学学报(理科版), 2005, 29(06): 1-.
[6]
唐玉超; 刘理蔚. 增生算子零点算法 [J]. 南昌大学学报(理科版), 2005, 29(05): 1-.
[7]
刘理蔚; 吴理华. 关于增生算子方程Ishikawa迭代法收敛率估计的注记 [J]. 南昌大学学报(理科版), 2005, 29(03): 1-.
[8]
刘理蔚; 李育强. 迭代法求解增生算子挠动方程 [J]. 南昌大学学报(理科版), 2005, 29(01): 1-.
[9]
胡良根; 刘理蔚. Banach空间中增生算子方程解的迭代逼近 [J]. 南昌大学学报(理科版), 2004, 28(01): 1-.
[10]
刘理蔚; 曹寒问. 关于m-增生算子的扰动方程 [J]. 南昌大学学报(理科版), 2003, 27(01): 1-.
[11]
刘理蔚; 吕强. 非线性Φ-强增生算子方程的迭代程序 [J]. 南昌大学学报(理科版), 1999, 23(03): 1-.
[12]
李育强; 刘理蔚. 一类非线性方程解的迭代逼近 [J]. 南昌大学学报(理科版), 1998, 22(02): 1-.
[13]
刘理蔚. m-增生和拟压缩算子方程随机解的存在性定理 [J]. 南昌大学学报(理科版), 1994, 18(04): 1-.
[14]
傅俊义. 巴拿赫空间中的随机增生算子方程 [J]. 南昌大学学报(理科版), 1992, 16(03): 1-.
[15]
姜集华. 关于区间(Pi,2Pi)内素数个数的注记 [J]. 南昌大学学报(理科版), 1990, 14(04): 1-.